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Abstract. We give a canonical formulation of a generalized coupled dispersionless system
proposed recently by the present authors. The symmetries of this system and their generators
are given. A geometrical interpretation of this system is discussed.

1. Introduction

Inverse scattering schemes for soliton equations are a powerful tool for obtainingN -soliton
solutions and an infinite number of conserved quantities. The most famous one is the ZS-
AKNS scheme [1, 2]. Many inverse scattering schemes, such as the ZS-AKNS and its
varieties, have 2× 2 matrix forms. There are, however, fewer generalizations of them to
3× 3 or higher-dimensional matrix forms. It is interesting to hunt for soliton equations
with generaln × n inverse scattering schemes. Recently, the present authors proposed a
generalized coupled dispersionless system given by

Sxt + [Sx, [S,G]] = 0 (1)

where the matrix fieldS = S(x, t) and the constant matrixG are elements of an
arbitrary non-Abelian Lie algebra [3]. This equation has then× n ZS-AKNS-type inverse
scattering scheme and nonlinearity comes from the non-Abelian character. Equation (1) is
a generalization of the coupled integrable, dispersionless equations [6, 7]:

qxt + (rs)x = 0

rxt − 2qxr = 0

sxt − 2qxs = 0

(2)

based on a group-theoretical point of view. ForSU(1, 1) ∼ O(2, 1) ∼ SL(2, R),
equation (1) reproduces equation (2). ForSU(2) ∼ O(3), we can obtain

qxt + (rr∗)x = 0

rxt − 2qxr = 0

r∗xt − 2qxr
∗ = 0

(3)
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which is equivalent to the Pohlmeyer–Lund–Regge system [4]. Equations (2) and (3) have
been solved by the inverse scattering method under the appropriate boundary conditions and
shown to be integrable [5–7]. They have the important conserved quantities

q2
x + rxsx = q2

0 (4)

and

q2
x + rxr∗x = q2

0 (5)

which are obtained from the inverse scattering schemes. Hereq0 = qx(±∞) is constant.
The canonical formulation of the system (2) was given in [8] with the Dirac bracket [9].

In this letter, we present a canonical formulation of generalized coupled dispersionless
system (1). In section 2 we shall review our general system. The canonical formulation
is given in section 3 and in section 4 we shall consider the symmetries of the Lagrangian.
Section 5 is devoted to discussions. There we also give a brief geometrical interpretation
of the generalized dispersionless system and an analogy between this system and a particle
in an external magnetic field.

2. The generalized coupled dispersionless system

Let G be a simple Lie group, dimG = N , andg be its Lie algebra. The generatorsT a of
g satisfy the commutation relation with the structure constantf abc:

[T a, T b] = if abcT
c (6)

and the Cartan metricηab is defined by

ηab = Tr(T aT b). (7)

Without loss of generality we can takeηab as diagonal andf abc as totally anti-symmetric.
With T a ’s we defineS by

S = φaT a = ηabφaT b (8)

whereφa = φa(x, t) is a vector field with components(φ1, φ2, . . . , φN) and ηab is the
inverse matrix ofηab. We also define a constant matrixG as

G = κaT a (9)

with a constant vectorκa = (κ1, κ2, . . . , κN). These quantities are rotated by the global
gauge transformation

S ′ = �−1S� (10)

G′ = �−1G� (11)

where� ∈ G.
Let us write the action of generalized coupled dispersionless system as

I =
∫

dt dx L(S, Sx, St ) (12)

whereL is the Lagrangian density defined by

L = Tr
(

1
2SxSt − 1

3G[S, [Sx, S]]
)
. (13)

This Lagrangian density is manifestly invariant under the global gauge transformation (10)
and (11). The Euler–Lagrange equation can be derived from the action (12) by

Sxt − [[S,G], Sx ] = 0. (14)



Letter to the Editor L403

From equation (14) it is easy to show that the following quantity:

Tr(Snx ) (15)

is conserved for integern (n > 1) and is also invariant under gauge transformation.
This system has the following inverse scattering scheme:

Vx = UV
Vt = WV

(16)

where the matricesU andW are elements ofg and are defined with an eigenvalueλ as

U = λSx

W = W0+ 1

λ
W1 = [S,G] + 1

λ
G.

(17)

This choice is an extension of the Kotlyarov’s definition [4] for theSU(2) to the general
Lie algebra. The compatibility condition

Ut −Wx + [U,W ] = 0 (18)

then yields the equation of motion

Sxt − [W0, Sx ] = 0 (19)

i.e. equation (14).
To obtain conservation law from the inverse scattering scheme, let the Jost function be

Vi = exp(6i). (20)

Then, from the compatibility conditionVxt = Vtx , we get

(6i)xt = (6i)tx . (21)

By using (16), equation (21) reduces to the form of the conservation law

∂

∂t

(∑
j

Uij
Vj

Vi

)
= ∂

∂x

(∑
j

Wij

Vj

Vi

)
. (22)

ExpandingVj/Vi (j 6= i) in the power series of 1/λ and equating the terms of the same
power of 1/λ, we can formally obtain an infinite number of conserved quantities [10].

Here we show some examples. For the case ofSU(1, 1) we can classify according
to κaκ

a > 0, = 0 and < 0. For κaκa > 0 equation (2) is obtained withφa =
(q, 1

2(r − s), 1
2(r + s)) andκa = (1, 0, 0) and its inverse scattering scheme is given by

U = λ
(
qx rx
sx −qx

)
W =

(
0 −r
s 0

)
− 1

2λ

(
1 0
0 −1

)
.

(23)

The generators ofSU(1, 1) are

T 1 = τ 3

√
2

T 2 = τ 1

√
2

T 3 = iτ 2

√
2

(24)

where the Pauli matricesτ i are

τ 1 =
(

0 1
1 0

)
τ 2 =

(
0 −i
i 0

)
τ 3 =

(
1 0
0 −1

)
. (25)
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The other choices ofκa, say,κa = (0, 0, 1) for κaκa < 0 andκa = (1, 0, 1) for κaκa = 0
yield different equations.

For SU(2), without loss of generality by virtue of the gauge invariance, we can choose
φa = ( 1

2(r + r∗), (1/2i)(r − r∗), q) andκa = (0, 0, 1) and the generators

T 1 = τ 1

√
2

T 2 = τ 2

√
2

T 3 = τ 3

√
2

(26)

and obtain equations (3). The inverse scheme is the same form as equations (25) with
s = r∗.

When we choose another Lie algebrag with dimensionN and appropriateκa, we
obtain a dispersionless system withN -components having the inverse scattering scheme
with a generaln× n matrix.

3. Canonical formulation

In this section we present a canonical formulation of the generalized coupled dispersionless
system (14). It is convenient to construct the canonical formulation in terms ofφa. The
Lagrangian density (13) becomes

L = 1
2φx · φt + 1

3κ · [φ × (φx × φ)] (27)

where the symbol ‘·’ denotes the inner product defined byϕ ·ψ = ϕaψa and ‘×’ the exterior
product defined by(ϕ × ψ)c = f abcϕaψb. The Euler–Lagrange equation is given by

φtx + (φ × κ)× φx = 0 (28)

through the variational principle. Linear independence of the basisT a can also give (28)
from (14). The canonical conjugate momentum is defined as

πa ≡ ∂L
∂φat
= 1

2
φax. (29)

It is obvious that the canonical conjugate momentum depends onφa. This is represented
by the constraint equation

χa ≡ πa − 1
2φ

a
x = 0. (30)

Since the usual Poisson bracket between the constraints does not vanish, this type of
constraint is called a second-class constraint. According to Dirac, we introduce the Dirac
bracket [9] defined by

{F(x),G(y)}DB ≡ {F(x),G(y)}PB

−
∫

dz dz′ {F(x), χa(z)}PB1
−1
ab (z − z′){χb(z′),G(y)}PB (31)

where the symbol{·, ·}PB stands for the Poisson bracket with the convention

{πa(x), φb(y)}PB = δbaδ(x − y) (32)

and1−1
ab is the inverse of the matrix made from the Poisson bracket between the constraints

1ab(x − y) = {χa(x), χb(y)}PB. (33)

The Dirac bracket (31) ensures that{χa, χb}DB = 0 and {R, χb}DB = 0, whereR is an
arbitrary function ofφa. Then, the fundamental Dirac bracket between the dynamical
variablesφa is

{φa(x), φb(y)}DB = 1
2η

ab sgn(x − y) (34)
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where sgn(x−y) is the sign function. This bracket relation is useful to calculate the relations
between physical quantities.

According to the usual procedure, the Hamiltonian is given by

H =
∫

dx H (35)

whereH is the Hamiltonian density defined by

H = φt · π − L
= − 1

3κ · [φ × (φx × φ)]. (36)

Since the Hamiltonian is the generator of time translation, time evolution of the
dynamical variables is given by the Hamilton equations in terms of the Dirac bracket as

φat = {H,φa}DB (37)

φaxt = {H,φax }DB (38)

which coincide with the Euler–Lagrange equation (28).
The conserved quantity (15) forn = 2 becomes

φx · φx (39)

which reduces to (4) and (5) forSU(1, 1) andSU(2), respectively.

4. Symmetries

The matrix formed Lagrangian density (13) is invariant under the global gauge
transformation (10) and (11). Hence, it is obvious that the Lagrangian density (27) is
also invariant under the infinitesimal version of the gauge transformation:

δφ = φ × θ (40)

δκ = κ × θ (41)

whereθa is an infinitesimal constant parameter of the gauge transformation. Sinceκa is not
a dynamical variable, the generators of the gauge transformation cannot obtained through
the Noether theorem. However, we do have the generator of the gauge transformation (40)
as

Qa
G =

1

2

∫
dx (φx × φ)a. (42)

Indeed,Qa
G satisfies the Lie algebra

{Qa
G,Q

b
G}DB = f abcQc

G (43)

and generates the gauge transformation

{Qa
G, φ

b(x)}DB = f abcφc. (44)

Although the transformation (40) without (41) is not a symmetry of the Lagrangian density
(27), there exists a special gauge transformation whereδκ = κ × θ = 0. The Lagrangian
density is really invariant under such a transformation and the generators of the special
gauge transformation are conserved quantities.

The action is invariant under the ‘reparametrization’ ofx:

dx ′ = dx + fx(x) dx (45)
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wheref (x) is an arbitrary infinitesimal function ofx. As special cases, translation and
scale transformation ofx are included. The Noether theorem gives us the generator of the
reparametrization

QR = 1

2

∫
dx (φx · φx). (46)

Although QR diverges becauseφx · φx = constant,QR formally generates the correct
transformation

{QR, φ
a(x)}DB = φax (x). (47)

QR is the Casimir invariant of the Lie algebrag. In fact, the Dirac bracket satisfies the
relation

{Qa
G,QR}DB = 0 (48)

i.e. QR is gauge invariant. Thex-translational invariance means that1
2φx · φx is the

momentum density of the field. The conservation law

(φx · φx)t = 0 (49)

represents conservation of momentum density. Namely, the conserved quantity (15) has a
physical meaning forn = 2. The action is also invariant under time translation,t ′ = t + ε
whereε is a constant infinitesimal parameter and, of course, the Noether theorem yields the
Hamiltonian (35).

5. Discussions

We have provided the canonical formulation of a generalized dispersionless system (28),
i.e. equation (1). We have defined the Dirac bracket between the dynamical variables
and presented the Hamiltonian and the Hamilton equations for the system. We have also
given the generators of the symmetries of the action, including the global gauge symmetry
and the reparametrization invariance ofx. We have obtained the generators of the gauge
transformation and found that the Lie algebra is realized by the Dirac bracket between
the generators. From the invariance of the reparametrization, we have shown the total
momentumQR of the field to be a conserved quantity.

Although the dispersionless system (1) has the inverse scattering scheme and has
formally, but not explicitly, an infinite number of conserved quantities. The integrability of
the generalized dispersionless system is not clear. This is still an open problem. We hope
that our formulation is helpful in solving this problem.

Finally, we would like to give some comments on generalized coupled dispersionless
systems. From the geometrical point of view it can be shown that the conserved quantity
(15) or (39) is a natural consequence of the simple structure of the system (14) or (28). At
a fixed timet , a solutionS0

x of (14) forms a certain curve in the spaceSx . The equation of
motion (14) describes the time evolution of this curve as

DtS
0
x = 0 (50)

whereDt is the covariant derivative defined as

DtA = At − [W0, A]. (51)

Equation (50) may be interpreted as a parallel transport of each pointx of the curve along
the direction oft andW0 plays the role of a connection. Tr((S0

x )
2) is a conserved quantity

because of (50). This situation is analogous to the square of the momentum of a charged
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particle interacting with an external magnetic field. Indeed, since the Lorentz force in the
magnetic field is orthogonal to the momentum of the charged particle, the absolute value
of the momentum is unchanged. So, assigningW0 as a magnetic field, we can say that the
coupled system (3) describes a current-conducting string with infinite length in a magnetic
field for O(3). Details will be discussed in a separate paper.

One of the authors (HK) thanks the members of Doyo-kai for valuable discussions.
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